Environmental Improvement in the Industries (EII) project

How to successfully implement RECP solutions

Jamnagar, 30 May 2018

Outline

- Introduction to SEIP-EII project and RECP
- Examples of RECP implementation
- Techniques and tools for RECP implementation

Introduction to SEIP-EII project and RECP

What is the EII project?

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH What is SEIP project?

Joint project of Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH and the Ministry of Environment, Forest and Climate Change (MoEFCC) within the framework of the Indo-German technical cooperation

Location and approach to RECP in EII project

 150 industries in Gujarat (Vapi), Uttarakhand (Haridwar), Delhi (Patparganj, Mayapuri, Lawrence Road) – detailed assessment in 40 industries

What is the Resource Efficient Cleaner Production (RECP) approach?

RECP approach

Waste is generated What is to be done with it ?

End of Pipe thinking: Waste Treatment approach

Waste is generated Where does it come from ? What can be done to avoid it ? What can be done to reduce it ? Who else can use it ? **Costs money**

Saves money!

RECP approach => for Pollution PREVENTION

RECP approach

RECP approach

- RECP is not about specific areas or topics but about a company as a whole
- **First step**: quick wins by improving resource use with its actual equipment and facilities
 - Low and no cost options preferred to mid- and high-cost options
- Low and no cost options have a short "return on investment".
- <u>Second step</u>: consider investments in more costly RECP options

What do you see?

Hot water flowing out of a pipe

What does this mean for RECP?

- An opportunity to save resources!
- A chance to measure the flow rate of the water
- A chance to measure the temperature of the water and the bore well water temperature

What does this mean for RECP?

- Q = m * cp * dT
- Q= 1 [l/s] * 1 [kg/l] * 4.2 [kJ/kg°C] * 70 [°C]
- Q = 294 [kJ/s]
- Consumption of oil = 0.0082 [kg/s]

Result:

Annual loss = INR 36,45,568

What do you see now?

Money flowing out of a water pipe

Examples of RECP implementation

Example: LED lighting

Before: Electrical panel with one CFL and two incandescent light bulbs

After: Electrical panel with LED lights

Problems identified	Solutions	Costs	Results	
Inefficient lighting system using CFL and incandescent lights	Replace inefficient light bulbs with energy efficient LED lights	INR 210	 Reduction in electricity consumption of 337 kWh per year. Reduced electricity consumption translates to cost savings of INR 2,696 per year. 	
Total investments:		INR 210		
Total savings:		INR 2,696 per year	INR 2,696 per year	
Estimated payback period:		1 months		

Example: Using paint to improve lighting

In a cathodic electro deposition (CED) plant a certain amount of non moving waste paint (up to 3% of raw paint) was accumulated over time. This paint though acceptable as ordinary paint could not be used in the CED process line. This non moving paint was used to paint the inner walls of the plant. This action resulted in brighter walls of the plant, thus improving reflectivity of light and **increasing lighting lux level, while utilizing waste paint**.

Example: Brass chip collection

Before: Brass chips in turning process fall to the ground, become dirty and revenue from selling the scrap is lost.

After: Guard provided on machine to avoid coolant spillage and chips on the floor resulting in proper brass chips collection

Annual savings (INR)	Investment (INR)	Payback (Months)
27,600	27,600	12

Example: Timer/buzzer

Before: Operation of process tanks without any timer and buzzer installed

After: Installation of a timer and buzzer at all process tanks, including degreasing and anodic cleaning tanks.

Annual savings (INR)	Investment (INR)	Payback (Months)
312,600	55,140	2.1

Example: Collection of zinc dust

Before: The zinc dust that resulted from machining of parts was collected, but not utilized.

Annual savings (INR)	Investment (INR)	Payback (Months)
23,000	Nil	Immediate

After: Collection and storage of zinc dust. Once sufficient dust was collected, it was sold to recyclers.

Example: Recycling of used resin coated sand

After: The company mixed the used sand with new sand for producing the cores. This resulted in 10% reduction in consumption of new sand.

Before: For producing the brass parts, used sand was disposed of and each core was produced with new sand.

Annual savings (INR)	Investment (INR)	Payback (Months)
295,000	Nil	Immediate

Example: Auto cut-off for water pump

Before: A pump filled the overhead tank of the plant. Problems associated with this were as follows:

- When the tank was full, the pump had to be switched off manually.
- Often the employees forgot to switch off the pump which led to an overflow of the tank and thus spillage as well as water losses.

After: installation of a float based auto cut off for the pump of the overhead tank.

Benefits	Investment (INR)
36,000 litres of ground water saved annually	4,500

Example: Storage of materials

Before:

Offcuts were haphazardly kept in the shop floor. The cut pieces were sold as scrap.

After:

A rack was build using the in-house materials for storage of offcuts. Reuse of cut pieces which were sold as scraps before intervention. Resulting in annual material savings of 50 tonnes.

Techniques and tools for RECP implementation

Key RECP techniques

How to identify RECP improvement potentials

 Simplify systematic monitoring and involve your workers with Ecomapping

5. Monitor and report

How to identify RECP improvement potentials

• Energy analysis

Improving power factor

kVAr Rating = kW [tanΦ1 – tanΦ2]

 Φ 1 = Existing (Cos⁻¹ PF₁) and Φ 2 = Improved (Cos⁻¹ PF₂)

Insulation analysis

Process bath analysis

Compressed air analysis

How to map material flows

Material flow analysis •

Input mass = output mass + storage

e.g. balance for solvents:

Input				Output			
E10	Solvent in paint	2000	Kg	A2	Solvent in exhaust air	2700	Kg ???
E11	Solvent	3000	Kg	A6	Spent cleaning solvent	1400	Kg
				A8	Paint sludge	393	kg
					Losses	507	kg ???
Total		5000	kg	Total		5000	kg

air 1.5 kg

How to calculate savings potentials

• Financing toolkit

Step-by-step guide

Decision Making Tool

0. Measure name and scale of applicability				
Measure name	Please insert the name of the measure			
Investment cost	Please insert the necessary investment amount of the measure 100.000,00 INR			
Interest rate	Please insert which interest rate you expect from the bank providing you the loan			
Use time of measure	Please insert the time you expect the measure to operate and provide you with savings			
Does this measure alter	the production process of the entire company or only parts of the operation?			
C Entire company				
Part of operation	1			

How to access resources

- Access resources via GIZ website
 - Success stories from EII project
 - Download <u>EII tools and training materials</u> on RECP
 - <u>Explore case studies</u> on ACIDLOOP website (EUfunded project)
 - Get informed at <u>RECPnet</u>
 - For advanced information, see EU <u>BAT reference</u> <u>documents</u>

For further information on how to explore the resource efficiency/savings potential in your company, <u>contact the EII project team</u>. Mihir Sharma (<u>mihir.sharma@stenum-asia.org</u>)

Thank you!

RECP options (intent to implement)

- LED lighting
- Proper collection of brass chips for remelting
- Proper measurement of parameters and process control in melting/extrusion (automation)
- Collection of dust for selling to recyclers
- Recycling of foundry sand
- Proper storage of materials

